Gevrey index theorem for the inhomogeneous $n$-dimensional heat equation with a power-law nonlinearity and variable coefficients

نویسندگان

چکیده

We are interested in the Gevrey properties of formal power series solution time inhomogeneous semilinear heat equation with a power-law nonlinearity $1$-dimensional variable $t\in\mathbb{C}$ and $n$-dimensional spatial $x\in\mathbb{C}^n$ analytic initial condition coefficients at origin $x=0$. prove particular that inhomogeneity together $s$-Gevrey for any $s\geq1$. In opposite case $s<1$, we show is $1$-Gevrey most while $s$-Gevrey, give an explicit example which $s'$-Gevrey no $s'<1$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Order reduction and μ-conservation law for the non-isospectral KdV type equation a with variable-coefficients

The goal of this paper is to calculate of order reduction of the KdV typeequation and the non-isospectral KdV type equation using the μ-symmetrymethod. Moreover we obtain μ-conservation law of the non-isospectral KdVtype equation using the variational problem method.

متن کامل

On convergence of homotopy analysis method to solve the Schrodinger equation with a power law nonlinearity

In this paper, the homotopy analysis method (HAM) is considered to obtain the solution of the Schrodinger equation with a power law nonlinearity. For this purpose, a theorem is proved to show the convergence of the series solution obtained from the proposed method. Also, an example is solved to illustrate the eciency of the mentioned algorithm and the h-curve is plotted to determine the region ...

متن کامل

Analytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity  

Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...

متن کامل

on convergence of homotopy analysis method to solve the schrodinger equation with a power law nonlinearity

in this paper, the homotopy analysis method (ham) is considered to obtain the solution of the schrodinger equation with a power law nonlinearity. for this purpose, a theorem is proved to show the convergence of the series solution obtained from the proposed method. also, an example is solved to illustrate the eciency of the mentioned algorithm and the h-curve is plotted to determine the region...

متن کامل

Gevrey order of formal power series solutions of inhomogeneous partial differential equations with constant coefficients

In an earlier paper, the first author showed that certain normalized formal solutions of homogeneous linear partial differential equations with constant coefficients are multisummable, with a multisummability type that can be determined from a Newton polygon associated with the PDE. In this article, some of the results obtained there are extended in several directions: First of all, arbitrary f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Scientiarum Mathematicarum

سال: 2021

ISSN: ['0324-5462', '2064-8316', '0001-6969']

DOI: https://doi.org/10.14232/actasm-020-571-9